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Exercise 5.13
Exercise

Find all maximal solutions of the equations

ẏ =
y

t
− 2y2 Hint: Exercise 4.18 ẏ = −2y2t

ẏ =
2y

t
+
(y
t

)2
Hint: Example 1.5 ẏ = y2

defined on DX = R+ × R.

Solution (first equation)

Let us treat first the first equation. The goal is, according to the hint, to transform the equation to the form
of ẏψ = −2y2ψt. Thus, we would like to use a linear spatial transformation so that

Xψ(t, yψ) = −2y2ψt. (1)

According to Definition 5.12, the relationship between the original and the transformed solutions is

y(t) = Φ(t)yψ(t) + g(t), (2)

where Φ(t) in our 1-dimensional case is a scalar valued function. To get Xψ(t, yψ), we can use formula (5.11)
from the book (which is derived by substituting the above expression into the original ODE):

Xψ(t, yψ) = Φ−1
(
−Φ̇yψ − ġ +X (t,Φyψ + g)

)
= Φ−1

(
−Φ̇yψ − ġ +

Φyψ + g

t
− 2(Φyψ + g)2

)
where we neglected the t arguments for simplicity, and used that X(t, y) = y/t− 2y2. We bear in mind that
our goal is to get back (1). Looking at the squared term we can guess that

g(t) = 0 Φ(t) = t Iψ = R+,

so we can define the linear spatial transformation as

(R+, t y(t)) ,

which fulfills all criteria of Definition 5.12 of linear spatial transformation, as Φ(t) = t is invertible on R+.
The transformed equation is the same as the ODE in Exercise 4.18:

ẏψ = Xψ(t, yψ) Xψ(t, yψ) = −2y2ψt

Now we use formula 5.12 to define the region.

DXψ = {(t, yψ) ∈ Iψ × Fn | (t,Φyψ + g) ∈ DX} = {(t, yψ) ∈ R+ × R | (t, tyψ) ∈ R+ × R} = DX

The transformed equation is the same as the ODE in Exercise 4.18, and can be solved the same way. The
only difference is the region of the solution: now we only need to consider positive t values as DXψ = R+×R.
The maximal solutions of the transformed ODE are in the form of (I, yψ), where I and yψ are the following:

I = R+ yψ(t) = 0

if t20 ≤ 1

η
and η 6= 0 then I = R+ yψ(t) =

1

t2 − t20 + 1/η

if t20 >
1

η
and η < 0 then I =

(
0,

√
t20 −

1

η

)
yψ(t) =

1

t2 − t20 + 1/η

if t20 >
1

η
and η > 0 then I =

(√
t20 −

1

η
,∞
)

yψ(t) =
1

t2 − t20 + 1/η
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where in all cases η ∈ R and t0 ∈ R+.
Now we need to transform the solution and the domains back to the original case. Let us begin with the

solution:
y(t) = Φ(t)yψ(t) + g(t) = t yψ(t).

To get back the domain we use formula 5.14 from the book:

D(Xψ)ψ−1
= (Iψ × Fn) ∩ DX = (R× R) ∩ (R+ × R) = DX .

So for the sake of completeness, the maximal solutions are the following:

I = R+ y(t) = 0

if t20 ≤ 1

η
and η 6= 0 then I = R+ y(t) =

t

t2 − t20 + 1/η

if t20 >
1

η
and η < 0 then I =

(
0,

√
t20 −

1

η

)
y(t) =

t

t2 − t20 + 1/η

if t20 >
1

η
and η > 0 then I =

(√
t20 −

1

η
,∞
)

y(t) =
t

t2 − t20 + 1/η

Solution (second equation)

Now we can move on to the next equation, where the goal is to transform the equation to the form of ẏψ = y2ψ.
We use a linear spatial transformation so that

Xψ(t, yψ) = y2ψ. (3)

Substituting the formula (5) from Definition 5.12 into the original ODE, or using formula 5.11 again:

Xψ(t, yψ) = Φ−1
(
−Φ̇yψ − ġ +X (t,Φyψ + g)

)
= Φ−1

(
−Φ̇yψ − ġ + 2

Φyψ + g

t
+

(Φyψ + g)2

t2

)
where we used that X(t, y) = 2y/t+ (y/t)2. To get y2ψ on the right-hand side, we choose

g(t) = 0 Φ(t) = t2 Iψ = R+,

so we can define the linear spatial transformation as(
R+, t2 y(t)

)
,

which fulfills all criteria of Definition 5.12 of linear spatial transformation, as Φ(t) = t2 is invertible on R+.
The transformed equation is:

ẏψ = Xψ(t, yψ) Xψ(t, yψ) = y2ψ

Using formula 5.12 to define the region:

DXψ = {(t, yψ) ∈ Iψ × Fn | (t,Φyψ + g) ∈ DX} =
{
(t, yψ) ∈ R+ × R | (t, t2yψ) ∈ R+ × R

}
= DX

The transformed equation can be solved as in Example 1.5 or as a separable equation, the only difference
again is the region of the solution as before. The maximal solutions of the transformed ODE are in the form
of (I, yψ), where I and yψ are the following:

I = R+ yψ(t) = 0

if η > 0 then I = (η,∞) yψ(t) =
1

η − t

if η > 0 then I = (0, η) yψ(t) =
1

η − t

if η ≤ 0 then I = R+ yψ(t) =
1

η − t
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where in all cases η ∈ R.
To transform the solution and the domains back to the original case, we have

y(t) = Φ(t)yψ(t) + g(t) = t2 yψ(t).

To get back the domain we use formula 5.14 from the book:

D(Xψ)ψ−1
= (Iψ × Fn) ∩ DX = (R+ × R) ∩ (R+ × R) = DX .

For the sake of completeness, the maximal solutions are the following:

I = R+ y(t) = 0

if η > 0 then I = (η,∞) y(t) =
t2

η − t

if η > 0 then I = (0, η) y(t) =
t2

η − t

if η ≤ 0 then I = R+ y(t) =
t2

η − t
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Exercise 6.7
Exercise

1. Let C, D ∈ Mn(C) with C invertible. Show that eCDC
−1

= CeDC−1.

2. Let A ∈ Mn(C) be diagonalizable. Denote by η1, . . . , ηn a basis of eigenvectors with the corresponding
eigenvalues λ1, . . . , λn. Put C = (η1, . . . , ηn). Argue that

eA = C Diag
[
eλ1 , . . . , eλn

]
C−1.

3. For c ∈ R define a 2× 2 matrix by

Ac =

[
2 1
c 2

]
.

Compute eAc for the two cases c = −4 and c = 4.

Solution (part 1)

We can use the definition of the exponential function eA =
∑∞
k=0(A

k/k!):

eCDC
−1

=

∞∑
k=0

(CDC−1)k

k!
=

∞∑
k=0

CDC−1 · · ·CDC−1

k!
=

∞∑
k=0

CDkC−1

k!
= C

( ∞∑
k=0

Dk

k!

)
C−1 = CeDC−1

Solution (part 2)

If A is diagonalizable, then it can be written in the following form: A = CDC−1, where D = Diag [λ1, . . . , λn]
and C contains the eigenvectors in its columns. Using the previous part of the exercise, we have:

eA = eCDC
−1

= CeDC−1 = C Diag
[
eλ1 , . . . , eλn

]
C−1,

where in the last step we have used Example 6.4 from the book.

Solution (part 3)

We would like to diagonalize A, so first, we determine the eigenvalues.

|A− λI| =
∣∣∣∣[ 2− λ 1

c 2− λ

]∣∣∣∣ = 0 =⇒ λ1;2 = 2±
√
c

If c = 4, then λ1 = 0 and λ2 = 4. We calculate the eigenvectors:

λ1 = 0

[
2 1
4 2

] [
η11
η21

]
=

[
0
0

]
=⇒

[
η11
η21

]
=

[
−1
2

]

λ2 = 4

[
−2 1
4 −2

] [
η12
η22

]
=

[
0
0

]
=⇒

[
η12
η22

]
=

[
1
2

]
Using the eigenvectors we can construct C and also calculate its inverse.

C =

[
η11 η12
η21 η22

]
=

[
1 −1
2 2

]
C−1 =

1

4

[
2 1

−2 1

]
Now we use the results from part 2 to calculate the exponential:

eA4 = C Diag
[
e0, . . . , e4

]
C−1 =

1

4

[
2(1 + e4) 1− e4

4(1− e4) 2(1 + e4)

]
.
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If c = −4, then λ1 = 2(1 + i) and λ2 = 2(1− i). We calculate the eigenvectors:

λ1 = 2(1 + i)

[
−2i 1

4 −2i

] [
η11
η21

]
=

[
0
0

]
=⇒

[
η11
η21

]
=

[
−i
2

]

λ2 = 2(1− i)

[
2i 1
4 2i

] [
η12
η22

]
=

[
0
0

]
=⇒

[
η12
η22

]
=

[
i
2

]
Using the eigenvectors we can construct C and also calculate its inverse.

C =

[
η11 η12
η21 η22

]
=

[
−i i
2 2

]
C−1 =

1

4

[
2i 1

−2i 1

]
Now we use the results from part 2 to calculate the exponential:

eA−4 = C Diag
[
e2(1+i), . . . , e2(1−i)

]
C−1 =

e2

4

[
2(e2i + e−2i) −i(e2i − e−2i)
4i(e2i − e−2i) 2(e2i + e−2i)

]
.

We can recognize that the exponential forms of sine and cosine appeared:

cosα =
eiα + e−iα

2
sinα =

eiα − e−iα

2i
.

So, the simplified solution:

eA−4 =
e2

2

[
2 cos 2 − sin 2

−4 sin 2 2 cos 2

]
.
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Exercise 6.9
Exercise

Let
A =

[
0 1

−1 0

]
and B =

[
0 1
1 0

]
.

Compute etA and etB using Example 6.9 and find the maximal solutions of the ODE-s ẏ = Ay and ẏ = By,
satisfying y(0) = (1, 0).

Solution

As A, B ∈ M2(R) and Tr(A) = Tr(B) = 0, all conditions are fulfilled to use Example 6.9. We calculate the
determinants:

|A| = 1 |B| = −1.

Use formulas (6.8) and (6.9) to get etA and etB , respectively.

|A| > 0 etA = cos
(
t
√
|A|
)
I +

sin
(
t
√
|A|
)

√
|A|

A = cos t I + sin tA =

[
cos t sin t

− sin t cos t

]

|B| < 0 etB = ch
(
t
√
− |B|

)
I +

sh
(
t
√
− |B|

)
√
|B|

B = ch t I + sh tB =

[
ch t sh t
sh t ch t

]
According to Theorem 6.12, the maximal solutions of the two ODE-s ẏ = Ay and ẏ = By are the following:

{(
R, etA ηA

)
|ηA ∈ R2

}
=

{(
R,
[

cos t sin t
− sin t cos t

]
ηA

)
|ηA ∈ R2

}
{(

R, etB ηB
)
|ηB ∈ R2

}
=

{(
R,
[

ch t sh t
sh t ch t

]
ηB

)
|ηB ∈ R2

}
To fulfill the IVP of y(0) = (1, 0),

ηA1 cos t+ ηA2 sin t = 1 =⇒ ηA1 = 1

−ηA1 sin t+ ηA2 cos t = 0 =⇒ ηA2 = 0

and for ηB :

ηB1 ch t+ ηB2 sh t = 1 =⇒ ηB1 = 1

ηB1 sh t+ ηB2 ch t = 0 =⇒ ηB2 = 0.

Thus, the maximal solutions satisfying the IVP are

ẏ = Ay

(
R,
[

cos t
− sin t

])

ẏ = By

(
R,
[

ch t
sh t

])
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Exercise 6.11
Exercise

Compute etA, etB , etC , etD where

A =

[
2 4

−2 −2

]
B =

[
3 4

−2 −3

]
C =

[
3 4

−2 −1

]
D =

[
5 4

−2 −1

]
Solution

We can use Remark 6.10 to decompose the matrices to a sum where one of the components has trace 0, and
the other is diagonal:

M = M − 1

2
Tr(M) I︸ ︷︷ ︸

M1, Tr(M1)=0

+
1

2
Tr(M) I︸ ︷︷ ︸

M2, diagonal matrix

Then, by Proposition 6.1,
eM = eM1+M2 = eM1 · eM2 ,

and eM1 can be calculated from Example 6.9, whereas eM2 can be calculated by Example 6.4.

Tr(A) = 0, A1 = A =

[
2 4

−2 −2

]
A2 =

[
0 0
0 0

]
|A1| = 4 > 0

Now, by using formula (6.8),

etA = cos 2t I +
1

2
sin 2tA1 =

[
cos 2t+ sin 2t 2 sin 2t

− sin 2t cos 2t− sin 2t

]

Tr(B) = 0, B1 = B =

[
3 4

−2 −3

]
B2 =

[
0 0
0 0

]
|B1| = −1 < 0

Now, by using formula (6.9),

etB = ch t I + sh tB1 =

[
ch t+ 3 sh t 4 sh t
−2 sh t ch t− 3 sh t

]

Tr(C) = 2, C1 =

[
2 4

−2 −2

]
= A C2 =

[
1 0
0 1

]
Now, by using etA,

etC = etA · etI = et
[

cos 2t+ sin 2t 2 sin 2t
− sin 2t cos 2t− sin 2t

]

Tr(D) = 4, D1 =

[
3 4

−1 −3

]
= B D2 =

[
2 0
0 2

]
Now, by using etB ,

etD = etB · e2tI = e2t
[

ch t+ 3 sh t 4 sh t
−2 sh t ch t− 3 sh t

]
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Exercise 6.17
Exercise

Compute etA and etB where

A =

 2 1 0
0 1 1
0 0 1

 and B =

 4 4 0
1 2 2

−1 −2 2


Solution

We can follow Example 6.18. First, we compute the eigenvalues:

|A− µI| = (2− µ)(1− µ)2 =⇒ µ1 = 1 µ2 = 2

|B − µI| = (4− µ)(2− µ)2 −8 + 4(4− µ)− 4(2− µ)︸ ︷︷ ︸
0

=⇒ µ1 = 2 µ2 = 4

Here µ1 has multiplicity 2 in both cases. We follow Case II. from Example 6.18.

etA = −et

 0 1 0
0 −1 1
0 0 −1

− (1 + t)et

 1 1 0
0 0 1
0 0 0

 0 1 0
0 −1 1
0 0 −1

+ e2t

 1 1 0
0 0 1
0 0 0

2

=

= et

 et et − 1 et − 1− t
0 1 t
0 0 1



etB = −2e2t

 0 4 0
1 −2 2

−1 −2 −2

− 1 + 2t

4
e2t

 2 4 0
1 0 2

−1 −2 0

 0 4 0
1 −2 2

−1 −2 −2

+
1

4
e4t

 2 4 0
1 0 2

−1 −2 0

2

=

= e2t

e2t

 2 2 2
0 0 0

−1 −1 −1

+ t

 −2 0 −4
1 0 2
1 0 2

+
1

2

 −2 −16 −4
−3 8 −6
5 8 10
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Exercise 6.18
Exercise

Let c ∈ C. Consider the matrix Ac ∈ M2(C) given by:

Ac =

[
1 c

−1 −1

]
.

Compute etAc for c = 0, 1, 2, 1 + 2i, 1− 2i.

Solution: c = 2

If c = 2, then all elements of the matrix are real. As TrA2 = 0, we can use Example 6.9 to calculate the
solution. The determinant is |A2| = −1 + c = 1 > 0, so using formula (6.8) we have

etA2 = cos t I + sin tA2 =

[
cos t+ sin t 2 sin t

− sin t cos t− sin t

]
Solution: c = 1− 2i

As the matrix is now complex, we cannot use Example 6.9; we have to use Putzer-s method. We follow
Example 6.17.

First we calculate the eigenvalues of A1−2i:

|A1−2i − µ I| =
∣∣∣∣ 1− µ 1− 2i

−1 −1− µ

∣∣∣∣ = (1− µ)(−1− µ) + 1− 2i = µ2 − 1 + 1− 2i = µ2 − 2i = 0.

For the eigenvalues, we need to calculate the square root of 2i.

i = ei
(
1
2+2k

)
π

√
i = ei

(
1
4+k

)
π = ±

√
2

2
(1 + i)

µ12 =
√
2i = ±(1 + i)

As we have two distinct roots, we are at Case II of Example 6.17. We compute

r1(t) = eµ1t = e−(1+i)t

r2(t) =
eµ2t − eµ1t

µ2 − µ1
=

e(1+i)t − e−(1+i)t

2(1 + i)
.

Using these and formula (6.13), we get:

etA1−2i =
eµ1t

µ1 − µ2
(A1−2i − µ2 I) +

eµ2t

µ2 − µ1
(A1−2i − µ1 I) .
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Exercise 6.24
Exercise

1. Find the 2-dimensional real vector space of solutions of the following two homogeneous equations for
real-valued functions

ẍ+ x = 0 and ẍ− x = 0.

2. In this and the following part consider the equation system studied in Example 2.16:

ẍ1 = x2 ẍ2 = x1.

Argue that the solutions found in Exercise 2.22 form a basis for the space of maximal solutions.

3. Using part 1, determine again all solutions of the equations system. Compare with part 2. Hint:
Example 5.21.

Solution (part 1)

We begin with the first equation. We identify DY = R×R×R. First, we determine the associated first-order
ODE:

y1 = x
y2 = ẋ

d

dt

[
y1
y2

]
=

[
0 1

−1 0

]
︸ ︷︷ ︸

A

[
y1
y2

]
DX = R× R2.

According to Theorem 6.12, the space of maximal solutions is the following:

S0,y =
{(

R, etAη
)
| η ∈ R2

}
.

As TrA = 0, we can use Example 6.9 to determine the exponential:

etA =

[
cos t sin t

− sin t cos t

]
To find the solution space of the second-order ODE, we can apply Theorem 6.22 (extract the first row of
S0,y):

S0 = {(R, η1 cos t+ η2 sin t) | η1, η2 ∈ R} .

We can follow the same steps for the second equation. Identify DY = R×R×R. The associated first-order
ODE:

y1 = x
y2 = ẋ

d

dt

[
y1
y2

]
=

[
0 1
1 0

]
︸ ︷︷ ︸

A

[
y1
y2

]
DX = R× R2.

The space of maximal solutions:
S0,y =

{(
R, etAη

)
| η ∈ R2

}
.

TrA = 0 again, so the exponential:

etA =

[
ch t sh t
sh t ch t

]
The solution space of the second-order ODE:

S0 = {(R, η1 ch t+ η2 sh t) | η1, η2 ∈ R} .
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Solution (part 2)

This second-order homogeneous system of ODE-s can be rewritten in the form of formula (6.20):

d2

dt2

[
x1

x2

]
+

[
0 −1

−1 0

]
︸ ︷︷ ︸

A0

[
x1

x2

]
= 0.

Then, the associated first-order ODE is the following:

y1 = x1

y2 = x2

y3 = ẋ1

y4 = ẋ2

d

dt


y1
y2
y3
y4

 =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


︸ ︷︷ ︸

A


y1
y2
y3
y4

 ẏ =

[
0 I

−A0 −A1

]
y

To find the solution space, we would like to use Theorem 6.22, so we need to calculate etA. We can easily
see by Laplace expansion with respect to the first row that the determinant is |A| = −1, so the matrix can
be diagonalized. We can identify the eigenvalues by solving∣∣∣∣∣∣∣∣

−λ 0 1 0
0 −λ 0 1
0 1 −λ 0
1 0 0 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣
−λ 0 1
1 −λ 0
0 0 −λ

∣∣∣∣∣∣+ 1

∣∣∣∣∣∣
0 −λ 1
0 1 0
1 0 −λ

∣∣∣∣∣∣ = λ4 − 1 = 0.

The four eigenvalues are
λ1 = 1 λ2 = −1 λ3 = i λ4 = −i.

The corresponding eigenvectors:

v1 =


1
1
1
1

 v2 =


−1
−1
1
1

 v3 =


i
−i
−1
1

 v4 =


−i
i
−1
1

 .

Now we can construct the matrix from the eigenvectors, and calculate its inverse:

C =


1 −1 i −i
1 −1 −i i
1 1 −1 −1
1 1 1 1

 C−1 =
1

4


1 1 1 1

−1 −1 1 1
−i i −1 1
i −i −1 1


Now etA can be calculated easily by applying our results from Exercise 6.7 (see also Remark 6.14):

etA = C Diag
{
et, e−t, eit, e−it

}
C−1 =

=
1

2


ch t ch t sh t sh t
ch t ch t sh t sh t
sh t sh t ch t ch t
sh t sh t ch t ch t

+
1

2


cos t − cos t sin t − sin t

− cos t cos t − sin t sin t
− sin t sin t cos t − cos t
sin t − sin t − cos t cos t

 .

We can extract the first two rows from etA to get Ψ1:

Ψ1 =
1

2

[
ch t ch t sh t sh t
ch t ch t sh t sh t

]
+

1

2

[
cos t − cos t sin t − sin t

− cos t cos t − sin t sin t

]
.

Finally, we can apply Theorem 6.22 to get the solution space.

S0 =
{
Ψ1η | η ∈ R4

}
Solution (part 3)
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Exercise 6.30
Exercise

Let
A =

[
0 1

−1 0

]
and B =

[
0 1
1 0

]
.

Identify a particular solution y0 and the solution space SB for the following equations:

1) ẏ = Ay +

[
0
1

]
3) ẏ = Ay +

[
0
et

]
5) ẏ = Ay +

[
0
t

]
2) ẏ = By +

[
0
1

]
4) ẏ = By +

[
0
et

]
6) ẏ = By +

[
0
t

]
Solution

According to Theorem 6.28, if A ∈ Mn(F) and b ∈ C0(I;Fn) where I ⊆ R is an interval, and t0 ∈ I, the a
particular solution y0 and the solution space Sb of the ODE ẏ = Ay + b is given by

y0 =

∫ t

t0

e(t−s)A b(s) ds Sb =
{
y0 + etAη | η ∈ Fn

}
.

The exponentials etA and etB can be calculated according to Example 6.9, see the solution of Exercise
6.9 for the details.

|A| = 1 |B| = −1.

|A| > 0 etA = cos
(
t
√
|A|
)
I +

sin
(
t
√
|A|
)

√
|A|

A = cos t I + sin tA =

[
cos t sin t

− sin t cos t

]

|B| < 0 etB = ch
(
t
√
− |B|

)
I +

sh
(
t
√
− |B|

)
√
− |B|

B = ch t I + sh tB =

[
ch t sh t
sh t ch t

]
We calculate the general form of the particular solutions y0 for a general b(t):

y0 =

∫ t

t0

e(t−s)A b(s) ds =

∫ t

t0

[
cos(t− s) sin(t− s)

− sin(t− s) cos(t− s)

] [
b1(s)
b2(s)

]
ds

y0 =

∫ t

t0

e(t−s)B b(s) ds =

∫ t

t0

[
ch (t− s) sh (t− s)
sh (t− s) ch (t− s)

] [
b1(s)
b2(s)

]
ds

Note that we are searching for one particular solution, thus t0 can be chosen arbitrarily. So, the solution
space is then given by the formula above.

Executing the integrals, we get the following independent particular solutions:

1) y0(t) =

[
1
0

]
3) y0(t) =

[
1
2e
t

1
2e
t

]
5) y0(t) =

[
t
1

]


Sb =

{
y0 + etA η | η ∈ R2

}
2) y0(t) =

[
−1
0

]
4) y0(t) =

[
1
2 t e

t

1
2 e

t(1 + t)

]
6) y0(t) =

[
−t
−1

]


Sb =

{
y0 + etB η | η ∈ R2

}
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Exercise 6.31
Exercise

Identify a particular solution x0 and the solution space Sf for the following ODE-s:

1) ẍ+ x = 1 3) ẍ+ x = et 5) ẍ+ x = t

2) ẍ− x = 1 4) ẍ− x = et 6) ẍ− x = t

Solution equation 1

We begin by finding the associated first-order ODE:

y1 = x
y2 = ẋ

d

dt

[
y1
y2

]
=

[
0 1

−1 0

] [
y1
y2

]
+

[
0
1

]
This is the same equation as we solved in Exercise 6.30, which was solved by the application of Theorem

6.28. See the solution of that exercise for further details:

y0(t) =

[
1− cos t

sin t

]
Sb =

{
y0 +

[
cos t sin t

− sin t cos t

]
η | η ∈ R2

}
.

As y1 = x, we consider only the first row of the above solution of the first-order ODE to get the solution of
the second-order ODE. Thus, a particular solution and the solution space is:

x0(t) = 1 Sb =
{
1 + η1 cos t+ η2 sin t | η1, η2 ∈ R2

}
.

Similarly, the other equations are corresponding to the ones in Exercise 6.30.
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Exam 2009 October, Exercise 1
Exercise

Consider the following separable ODE:
ẏ = y2 sin(t), (4)

defined for all t and y.
• Find the maximal solution with y(0) = 0

• Find the maximal solution with y(0) = 1/3

• Find the maximal solution with y(0) = 1/2 and y(0) = 1

Solution

To solve this exercise, we follow Section 4.1 and Section 4.2 in the book.
The equation can be written in the form

ẏ = y2 sin(t)︸ ︷︷ ︸
X(t,y)

DX = I × J , from the exercise: DX = R× R.

We can introduce the following notations as usual:

y(t0) = η f(y) := y2 q(t) := sin(t) so the equation: ẏ = f(y) q(t).

As the ODE can be written in the above form, I and J are open intervals, f ∈ C0(J ) (as y2 is continuous
on R) and q ∈ C0(I) (as sin(t) is continuous on R), 4 is a separable equation. The overall goal to solve the
ODE using Theorem 4.6 from the book.

First identify the constant solutions (equilibria).

ε := {y ∈ R | f(y) = 0} = f−1({0}) = {0}

So, the only constant solution is (R, 0), as y(t) = 0 is defined on the entire I = R. Recognizing that y(t) = 0
fulfills the initial condition y(0) = 0, we have solved the first part.

Now we decompose J to countable open domains.⋃
i

Ji = R \ {ε} = (−∞, 0)︸ ︷︷ ︸
J−

∪ (0, +∞)︸ ︷︷ ︸
J+

As in J− and J+, f(y) 6= 0, so it is OK to divide the ODE by f(y). Thus, with the introduction of h(y), we
get:

h(y) :=
1

f(y)
=

1

y2
h(y) ẏ = q(t).

Following Section 4.2 from here, we calculate the below integrals:

Qt0(t) :=

∫ t

t0

q(t̃) dt̃ =

∫ t

t0

sin(t̃) dt̃ = cos(t0)− cos(t)

Hη(y) :=

∫ y

η

h(ỹ) dỹ =

∫ y

η

1

ỹ2
dỹ =

1

η
− 1

y

We can use Theorem 4.6, and determine the non-equilibrium solutions (I, y). We see that all the η initial
values (apart from the solved case when η = 0) lie in J+, so we deal with this only. From the theorem we
know that

I = Q−1
t0 (Hη(J+)) = Qt0

({
1

η
− 1

y
| y ∈ (0, +∞)

})
= Qt0

((
−∞,

1

η

))
=

=

t ∈ R | −∞ < 1− cos(t)︸ ︷︷ ︸
Q0(t)

<
1

η

 =

{
t ∈ R | 1− 1

η
< cos(t)

}
,

15



where in the first step of the second line we used that t0 = 0 for all parts of the exercise, so Qt0(t) = Q0(t).
In order to get the solution, we need to calculate:

y(t) = H−1
η (Qt0(t)) =

1
1
η −Q0(t)

=
1

1
η − 1 + cos (t)

.

Let us consider the three cases when η 6= 0 one by one.

• If η = 1/3, then
I = {t ∈ R | − 2 < cos(t)} = R.

As this consists of a single connected component containing t0 = 0, the solution fulfilling the initial
value problem is (

R,
1

2 + cos (t)

)
.

• If η = 1/2, then

I = {t ∈ R | − 1 < cos(t)} = R \
⋃
k∈Z

{(2k + 1)π)} =
⋃
k∈Z

((2k − 1)π, (2k + 1)π) .

This is the union of intervals, and as t0 = 0 is contained in the interval where k = 0, the solution
fulfilling the initial value problem is (

(−π, +π) ,
1

1 + cos (t)

)
.

• If η = 1, then

I = {t ∈ R | 0 < cos(t)} =
⋃
k∈Z

((
2k − 1

2

)
π,

(
2k +

1

2

)
π

)
.

This is again the union of intervals, and as t0 = 0 is contained again in the interval where k = 0, the
solution fulfilling the initial value problem is((

−π

2
, +

π

2

)
,

1

cos (t)

)
.

Please find the interactive graph of the solution by clicking on this link.
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Exam 2014 August, Exercise 1
Exercise

• Show that
[

ch t sh t
sh t ch t

]
is a fundamental matrix for

ẏ =

[
0 1
1 0

]
y y ∈ R2.

• Find all maximal solutions for

ẏ1 = y1 ẏ2 = y3 ẏ3 = y2 ẏ4 = y4 yi ∈ R.

• Find all maximal solutions for Φ̇ = ΦT , where Φ ∈ M2(R).

Solution (part 1)

We can write the equation of the form

ẏ = Ay A =

[
0 1
1 0

]
.

According to Theorem 6., if A ∈ Mn(F), ẏ = Ay, then the fundamental matrix of the equation is (R, etA).
To calculate etA, we can follow Example 6.9 as TrA = 0.

|A| = −1 < 0 etA = ch (t
√
−|A|) I +

sh (t
√
−|A|)√

−|A|
A = ch (t) I + sh (t)A =

[
ch t sh t
sh t ch t

]
Thus, we have showed that the fundamental matrix is as stated.

Solution (part 2)

As y1, y4 are detached from y2, y3, the first and last equations can be solved separately. Following Example
1.3, the sets of maximal solutions are:{(

R, y1 = η1 e
t
)
| η1 ∈ R

} {(
R, y4 = η4 e

t
)
| η4 ∈ R

}
.

For y2, y3, we have the following equation:

d

dt

[
y2
y3

]
=

[
0 1
1 0

] [
y2
y3

]
.

This is the same ODE as in part 1. All maximal solutions are given as the linear combinations of the columns
of the fundamental matrix (Theorem 6.12). Thus, the maximal solutions of the equations are:

y1 : (R, η1 et)

y2 : (R, η2 ch t+ η3 sh t)

y3 : (R, η2 sh t+ η3 sh t)

y4 : (R, η4 et)


ηi ∈ R

17



Solution (part 3)

Let us denote the elements of the matrix Φ by:

Φ(t) =

[
y1(t) y3(t)
y2(t) y4(t)

]
ΦT (t) =

[
y1(t) y2(t)
y3(t) y4(t)

]
.

Then the ODE is: [
ẏ1(t) ẏ3(t)
ẏ2(t) ẏ4(t)

]
=

[
y1(t) y2(t)
y3(t) y4(t)

]
.

This means, that we have the same set of ODE-s as in part 2 of this exercise for the elements. Thus, the set
of maximal solutions is: {(

R,
[

η1 e
t η2 sh t+ η3 ch t

η2 ch t+ η3 sh t η4 e
t

])
| ηi ∈ R

}

18



Exam 2014 August, Exercise 2
Exercise

Consider the linear fourth-order ODE:

x(4) − 5x(2) + 4x = 0, x ∈ R.

We can use that 
1 1 1 1
1 2 −1 −2
1 4 1 4
1 8 −1 −8


−1

=
1

12


8 8 −2 −2

−2 −1 2 1
8 −8 −2 2

−2 1 2 −1

 .

1. Find the space of maximal solutions S0.

2. Find the maximal solution fulfilling

x(0) = 1, x(1)(0) = 1, x(2)(0) = −5, x(3)(0) = 1.

3. Find Ψ14(t), the top right corner of etA, where A is the coefficient matrix for the associated first-order
ODE ẏ = Ay.

4. Find the maximal solution of
x(4) − 5x(2) + 4x = 12et,

that satisfies the above IVP.

Solution (part 1)

First, compute the associated first-order ODE:

y1 = x(0)

y2 = x(1)

y3 = x(2)

y4 = x(3)

d

dt


y1
y2
y3
y4

 =


0 1 0 0
0 0 1 0
0 0 0 1

−4 0 5 0


︸ ︷︷ ︸

A


y1
y2
y3
y4



To find the solution space, we would like to use Theorem 6.22, so we need to calculate etA. We can easily
see by Laplace expansion with respect to the first row that the determinant is |A| = 4, so the matrix can
be diagonalized. We can identify the eigenvalues by solving |A − λ I| = 0, or by finding the characteristic
polynomial from the higher-order equation (by substituting eλt):

λ4 − 5λ2 + 4 = 0.

The four eigenvalues are
λ1 = 1 λ2 = 2 λ3 = −1 λ4 = −2.

The solution space is then, by Theorem 6.23:

S0 = SpanR
{
et, e2t, e−t, e−2t

}
.

Solution (part 2)

To find the maximal solution fulfilling the IVP, we take a general element of S0:

x0(t) = η1e
t + η2e

2t + η3e
−t + η4e

−2t.
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Considering the derivatives at t = 0, we have:
x(0)(0)
x(1)(0)
x(2)(0)
x(3)(0)

 =


1 1 1 1
1 2 −1 −2
1 4 1 4
1 8 −1 −8




η1
η2
η3
η4

 =


1
1

−5
1

 .

Solving this system of equation by multiplying the the inverse with the initial conditions will result in:
η1
η2
η3
η4

 =


2

−1
1

−1

 .

Solution (part 3)

Now we calculate the eigenvectors of A:

v1 =


1
1
1
1

 v2 =


1
2
4
8

 v3 =


1

−1
1

−1

 v4 =


1

−2
4

−8

 .

Now we can construct the matrix C from the eigenvectors, and calculate its inverse using the hint:

C =


1 1 1 1
1 2 −1 −2
1 4 1 4
1 8 −1 −8

 C−1 =
1

12


8 8 −2 −2

−2 −1 2 1
8 −8 −2 2

−2 1 2 −1


Now etA can be calculated easily by applying our results from Exercise 6.7 (see also Remark 6.14):

etA = C Diag
{
et, e2t, e−t, e−2t

}
C−1

We can extract Ψ14:
Ψ14 =

1

12

(
−2et + e2t + 2e−t − e−2t

)
=

1

6
sh 2t− 1

3
sh t.

Solution (part 4)

To get the solution for the inhomogeneous equation, we apply Theorem 6.30.

x0(t) =

∫ t

t0

Ψ14(t− s) f(s) ds f(t) = 12et

Executing the calculation we get:
x0(t) = · · · = −2tet.

So, the maximal solutions to the inhomogeneous equation are:

Sb = S0 − 2tet.

In order to find the coefficients so that the solution satisfies the IVP, we can use a similar method as above
in part 2. 

η1
η2
η3
η4

 =
1

12


20
0
0

−8

 .

The maximal solution satisfying the IVP is then(
R,
(
5

3
− 2t

)
et − 2

3
e−2t

)
.
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Exam 2016 March, Exercise 1
Exercise

Consider the equations defined in DX = R+ × R+, and the solutions y = y(t).

1. Find the maximal solutions for
ẏ =

1

4y3
, y(2) =

√
2.

2. Find the maximal solutions for
ẏ =

2t

4y3
, y(

√
2) =

√
2.

Hint: reparametrization (temporal transformation or separation of variables).

3. Find the maximal solutions for

ẏ = − y

4t
+

1

2y3
, y(

√
2) = 2

3
8 .

Hint: search for a transformation of the form tα y(t).

Solution (part 1)

This ODE can be solved by the separation of variables as it has the form of ẏ = f(y) q(t). We can identify
the two components of DX :

DX = I × J = R+ × R+.

Furthermore,
f(y) :=

1

4y3
q(t) := 1 t0 = 2 η =

√
2

First, identify the constant solutions:

E = {y ∈ J |f(y) = 0} =

{
y ∈ R+ | 1

4y3
= 0

}
= ∅.

Thus, there are no constant solutions, so there is no need to decompose J further. Define h(y):

h(y) :=
1

f(y)
= 4y3,

so the ODE now has the form of
h(y)ẏ = q(t).

To integrate the separated ODE, we calculate the antiderivatives of q(t) and h(y):

Qt0(t) =

∫ t

t0

q(s) ds =

∫ t

t0

1 ds = t− t0 = t− 2,

Hη(y) =

∫ y

η

h(r) dr =

∫ y

η

4r3 dr = y4 − η4 = y4 − 4.

According to Theorem 4.6, the interval of the maximal solution is the connected component of t0 in
Q−1
t0 (Hη(J )), and the function solving the ODE is given by y(t) = H−1

η (Qt0(t)). So we compute first Hη(J )
and then I.

Hη(J ) =
{
z ∈ R|04 − 4 < z < ∞4 − 4

}
= (−4,∞)

I = Q−1
t0 (Hη(J )) = (−4 + 2,∞+ 2) = (−2,∞)
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But as I = R+, I = R+ as well. We move on to compute H−1
η and then y(t).

H−1
η = (z + 4)

1
4

y(t) = H−1
η (Qt0(t)) = (t− 2 + 4)

1
4 = (t+ 2)

1
4

So, the maximal solution satisfying the IVP is(
R+, (t+ 2)

1
4

)
Solution (part 2)

We solve this ODE by the application of a temporal transformation, and begin by applying formula (5.3).

DXΘ
= {(t, y) ∈ IΘ × Rn | (Θ(t), y) ∈ DX}

XΘ(t, y) = Θ̇(t)X (Θ(t), y (Θ(t)))

Substituting X(t, y) = 2t
4y3 into the above formula, we get

XΘ(t, y) = Θ̇(t)
2Θ(t)

4y3Θ
.

We could get back the original equation if 2 Θ̇(t)Θ(t) was 1.

2 Θ̇(t)Θ(t) = 1 =⇒ Θ(t) =
√
t

This temporal transformation defined on IΘ = R+, is differentiable, invertible and orientation preserving (as
Θ̇ > 0). We identify DXΘ based on the formula above:

DXΘ
=
{
(t, y) ∈ R+ × R+ | (

√
t, y) ∈ DX

}
= DX .

Now we transform the IVP of the original equation to the transformed equation. Values in the transformed
time are those that were Θ−1(t) earlier in the original time:

y(
√
2) =

√
2 =⇒ y(2) =

√
2.

The solution to the transformed equation is the same as above as all the equation, the IVP and the domain
are the same. (

R+, (t+ 2)
1
4

)
To transform back to the original time, we apply the t → Θ−1(t) = t2 inverse transformation, so the solution
of the original equation is (

R+, (t
2 + 2)

1
4

)
.

Note that the interval R+ is left intact by the inverse transformation as well. This solution is maximal due
to Theorem 5.9.

Solution (part 3)

We solve this equation using linear spatial transformation. According to Definition 5.12, the relationship
between the original and the transformed solutions is

y(t) = Φ(t)yψ(t) + g(t), (5)

where Φ(t) in our 1-dimensional case is a scalar valued function. Using the hint, we know that that Φ(t) = tα

and g(t) = 0. We know that X(t, y) = −y/(4t) + 1/(2y3), and to get Xψ(t, yψ), we can use formula (5.11)
from the book (which is derived by substituting the above expression into the original ODE):

Xψ(t, yψ) = Φ−1
(
−Φ̇yψ − ġ +X (t,Φyψ + g)

)
= t−α

(
−α tα−1yψ − tαyψ

4t
+

1

2(tαyψ)3

)
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where we neglected the t arguments for simplicity. Expanding the expression results in:

Xψ(t, yψ) = −
(
α+

1

4

)
y

t
+

1

2 t4α y3
,

from which we can guess that α = −1/4 result in the simplification of the ODE. Defined on Iψ = R+, the
linear spatial transformation we can apply is (

R+, t
− 1

4

)
,

which fulfills all criteria of Definition 5.12 of linear spatial transformation, as Φ(t) = t−
1
4 is invertible on R+.

The transformed equation is the same as the ODE in part 2:

ẏψ = Xψ(t, yψ) Xψ(t, yψ) =
2t

4y3ψ

Now we use formula 5.12 to define the region.

DXψ = {(t, yψ) ∈ Iψ × Fn | (t,Φyψ + g) ∈ DX} =
{
(t, yψ) ∈ R+ × R | (t, t− 1

4 yψ) ∈ R+ × R
}
= DX

The maximal solution of the transformed equation is(
R+, (t

2 + 2)
1
4

)
,

and to get the solution to the original ODE, we apply the transformation to this solution:(
R+, t

− 1
4 (t2 + 2)

1
4

)
.

This solution is maximal due to Theorem 5.13. The domain of the solution is left intact as according to
formula (5.14),

D(Xψ)ψ−1
= (Iψ × Fn) ∩ DX = (R+ × R) ∩ DX = DX .

At t =
√
2, the above solution takes the value of 2 3

8 , so the IVP is fulfilled.
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Exam 2017 March, Exercise 3
Exercise

1. Find the maximal solutions for the homogeneous equation

ẍ− ẋ− 2x = 0 ∀t ∈ R.

2. Find a particular solution for the inhomogeneous equation

ẍ− ẋ− 2x = −3e−t

3. Argue that the inhomogeneous equation with initial condition x(0) = 0, ẋ(0) = 1 has a unique solution,
and find it.

Solution (part 1, version 1)

First find the associated first-order ODE:
y1 = x
y2 = ẋ

d

dt

[
y1
y2

]
=

[
0 1
2 1

]
︸ ︷︷ ︸

A

[
y1
y2

]
.

We know from Theorem 6.12 that the space of maximal solutions is

S0 =
{(

R, etAη
)
| η ∈ R2

}
.

As TrA = 1 6= 0, we can use Remark 6.10 to decompose the matrix to the sum where one of the terms has
trace 0, and the other is diagonal:

A = A− 1

2
I︸ ︷︷ ︸

A1, Tr(A1)=0

+
1

2
I︸︷︷︸

A2, diagonal matrix

=

[
−1/2 1
2 1/2

]
+

[
1/2 0
0 1/2

]
.

Then, by Proposition 6.1,
etA = et(A1+A2) = et A1 · et A2 .

The first term, eA1 can be calculated from Example 6.9:

|A1| = −9/4 < 0 etA1 = ch
(
t
√

− |A1|
)
I +

sh
(
t
√
− |A1|

)
√

− |A1|
A1 =

= ch

(
3

2
t

)
I + sh

(
3

2
t

)
A1 =

=

[
ch
(
3
2 t
)
− 1

3 sh
(
3
2 t
)

2
3 sh

(
3
2 t
)

4
3 sh

(
3
2 t
)

ch
(
3
2 t
)
+ 1

3 sh
(
3
2 t
)
]
.

The second term, eA2 can be calculated by Example 6.4:

etA2 = e
1
2 t I.

Thus, by multiplying the terms, we get:

etA = etA1 · etA2 =

= e
1
2 t

[
ch
(
3
2 t
)
− 1

3 sh
(
3
2 t
)

2
3 sh

(
3
2 t
)

4
3 sh

(
3
2 t
)

ch
(
3
2 t
)
+ 1

3 sh
(
3
2 t
)
]
=

=
e2t

3

[
1 1
2 2

]
+

e−t

3

[
2 −1

−2 1

]
.
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According to Theorem 6.12, the maximal solutions are then:{(
R, etAη

)
| η ∈ R2

}
.

As the first row of the solution, y1 corresponds to the original solution x (see Theorem 6.22), so the set of
maximal solutions for the original equation is:{(

R, η1 e2t + η2 e
−t) | η1, η2 ∈ R2

}
,

where we simplified the coefficients.

Solution (part 1, version 2)

We can use Theorem 6.23 from the book. We have a 1-dimensional, second-order ODE, and in our case
F = R. We can obtain the characteristic polynomial by substituting x(t) = eλ t to the original ODE (see
Lemma 6.25):

λ2 − λ− 2 = 0 =⇒ λ1 = 2 λ2 = −1.

As both eigenvalues have a multiplicity of 1, by Theorem 6.23, solution space is:

S0 = SpanR
{
e2t, e−t

}
.

Solution (part 2)

We would like to use Theorem 6.30, which states that if Aj ∈ Mn(F), and f ∈ C0(I;Fn) with I ⊆ R an
interval, then a particular solution of the higher-order ODE

x(k) +Ak−1x
(k−1) + · · ·+A1x

(1) +A0x = f(t)

is given by

x0(t) =

∫ t

t0

Ψ1k(t− s) f(s) ds,

and the solution space is

Sf =

{∫ t

t0

Ψ1k(t− s) f(s) ds+Ψ1(t) η

∣∣∣∣ η ∈ Fkn
}
.

In our case (Theorem 6.30),
Ψ1k = Ψ12 =

1

3

(
e2t − e−t

)
.

So, substituting this into the formula above:

x0 =

∫ t

0

1

3

(
e2t − e−t

) (
−3e−s

)
ds = · · · = 1

3

(
e2t − e−t

)
+ t e−t.

As the first term of x0 is included in the solution of the homogeneous equation, it can be neglected for
simplicity. Now we can determine the solution space of maximal solutions for the inhomogeneous ODE.{(

R, η1 e2t + η2 e
−t + t e−t

)
| η1, η2 ∈ R2

}
Solution (part 3)

The associated first-order ODE of the inhomogeneous ODE looks like:
y1 = x
y2 = ẋ

d

dt

[
y1
y2

]
= X(t, y) =

[
0 1
2 1

] [
y1
y2

]
+

[
0

−3e−t

]
.

We would like to use Theorem 7.19. Assume that the solution to the IVP is not unique. There exists a
time t0 = 0, where the two solutions must match. X(t, y) is locally Lipschitz, as it has continuous partial
y-derivatives (Lemma 7.14). It follows from Theorem 7.19 that the two solutions must be the same.

To satisfy the IVP, η1 = η2 = 0, so the maximal solution satisfying the IVP is:(
R, t e−t

)
.
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Exam 2018 June, Exercise 2
Exercise

1. Find the fundamental matrix of
ẏ = By B =

[
2 −1
5 −2

]
.

2. Find the maximal solutions of the equation.

3. Find the maximal solution satisfying the IVP

y(0) =

[
1
0

]
.

4. Find the maximal solution for the inhomogeneous equation

ẏ = By +

[
t− 2
2t− 4

]
y(0) =

[
1
0

]
.

Solution (part 1)

We know from Theorem 6.12 that the space of solutions is

S0 =
{(

R, etBη
)
|η ∈ R2

}
.

As TrB = 0, we can use Example 6.9 to calculate the exponential (|B| = 1 > 0).

etB =

[
cos t+ 2 sin t − sin t

5 sin t cos t− 2 sin t

]
.

From Theorem 6.13, the fundamental matrix Φ is:

Φ(t) = etBη η ∈ R2.

Solution (part 2)

The maximal solutions of the equation are (Theorem 6.13):{
(R, Φ(t)) | η ∈ R2

}
.

Solution (part 3)

Again, according to Theorem 6.13, the η = Φ(0) = (1, 0), meaning that the maximal solution satisfying the
IVP is (

R,
[

cos t+ 2 sin t
5 sin t

])
.

Solution (part 4)

To find a particular solution y0, we can use Theorem 6.28.

y0 =

∫ t

t0

e(t−s)B b(s) ds =

∫ t

0

e(t−s)B b(s) ds

Another, faster method is to look at the inhomogeneous term, and search a particular solution in the same
form

y0 =

[
at+ b
ct+ d

]
.
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Substituting this into the equation, we get[
a
c

]
=

[
2at+ 2b− ct− d+ t− 2

5at+ 5b− 2cc−−2d+ 2t− 4

]
.

Matching the linear and constant coefficients, we get the following equation:
2 0 −1 0

−1 2 0 −1
5 0 −2 0
0 5 −1 −2




a
b
c
d

 =


−1
2

−2
4

 .

Solving this e.g. by Gaussian elimination, the solutions are a = d = 0, b = c = 1. Thus, a particular solution
is:

y0(t) =

[
1
t

]
.

Thus, the solution space for the inhomogeneous equation is (Theorem 6.28):

Sb =
{(

R, etBη + y0
)
|η ∈ R2

}
.

To satisfy the IVP, η1 = η2 = 0, so the maximal solution satisfying the IVP is:(
R,
[

1
t

])
.
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Exam 2022 August, Exercise 2
Exercise

1. Find all maximal solutions to the following system of differential equations

ẏ1 = 2y1y2

ẏ2 = 1

defined for all t, y1, y2 ∈ R.

2. Consider now the non-linear differential equation

ẏ = X(y) =

[
1
2 (y

2
1 − y22) + 1

1
2 (y

2
2 − y21) + 1

]
defined for t ∈ R and y ∈ R2, i.e., DX = R× R2. Verify that

Ψt(y) =

[
y1 + y2
−y1 + y2

]
with IΨ = R defines a linear spatial transformation.

3. Determine the transformed region DXΨ
⊆ R× R2 and the the ODE ẏΨ = XΨ(t, yΨ).

4. Find the maximal solution (I, y) which satisfies

y(0) =

[
1

−1

]
.

Solution (part 1)

The second equation is independent of y1, and can be solved using the fundamental theorem of calculus:

y2(t) =

∫ t

t2

1 ds = t− t2 = t+ η2,

where we introduced a new variable η2 for consistency. Then, by substituting y2 into the first equation:

ẏ1 = 2(t+ η2)y1,

which can be solved as Example 1.3: {
(R, eG η1) | η1 ∈ R

}
G =

∫
2(t+ η2) dt = t2 + 2η2 t.

So, the maximal solutions for y1 are {
(R, et

2+2η2 t η1) | η1, η2 ∈ R
}
.

Thus, the maximal solutions for the system of ODE-s:{(
R,
[

et
2+2η2 t η1
t+ η2

])
| η1, η2 ∈ R

}
.
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Solution (part 2)

We can rewrite Ψt(y) as follows:

Ψt(y) =

[
1 1

−1 1

]
︸ ︷︷ ︸

Φ(t)

[
y1
y2

]
.

As Φ(t) is a matrix independent of y. Its determinant is |Φ(t)| = 2, so it is invertible, and the domain IΨ = R
on which it is given is given is an interval. Thus, all conditions of Definition 5.12 are fulfilled, and Ψt(y) is a
linear spatial transformation.

Solution (part 3)

To get Xψ(t, yψ), we can use formula (5.11) from the book (which is derived by substituting the above
expression into the original ODE):

Xψ(t, yψ) = Φ−1
(
−Φ̇yψ − ġ +X (t,Φyψ + g)

)
.

To compute the above expression, we need to calculate Φ−1:

Φ−1 =
1

2

[
1 −1
1 1

]
,

and also note that Φ̇ = 0. Thus,

Xψ(t, yψ) =
1

2

[
1 −1
1 1

] [
1
2

(
(yΨ1 + yΨ2)

2 − (−yΨ1 + yΨ2)
2
)
+ 1

1
2

(
(−yΨ1 + yΨ2)

2 − (yΨ1 + yΨ2)
2
)
+ 1

]
=

[
2yΨ1yΨ2 + 1

1

]
.

Now we use formula 5.12 to define the region.

DXψ = {(t, yψ) ∈ Iψ × Fn | (t,Φyψ + g) ∈ DX} =
{
(t, yψ) ∈ R× R2 | (t, tyψ) ∈ R× R2

}
= DX

Solution (part 4)

As the transformed ODE is the same as the one in part 1, the maximal solutions for yΨ are also the same:{(
R,
[

et
2+2η2 t η1
t+ η2

])
| η1, η2 ∈ R

}
.

We apply the transformation to get the maximal solution for the original ODE:{(
R,

[
et

2+2η2 t η1 + t+ η2
−et

2+2η2 t η1 + t+ η2

])
| η1, η2 ∈ R

}
.

Note that the domain was not affected by the transformation. The IVP can be solved easily:

η1 + η2 = 1

−η1 + η2 = −1,

which is solved by η1 = 2 and η2 = −1. So the maximal solution satisfying the IVP is:(
R,

[
2 et

2−2 t + t− 1

−2 et
2−2 t + t− 1

])
.
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