Uniform Manifold Approximation and Projection

Peter Juhasz

April 22, 2024

Peter Juhasz Uniform Manifold Approximation and Projection

Information

Contact

- name: Peter Juhasz
- email: peter.juhasz@math.au.dk

Agenda

- Principal Component Analysis: April 8
- t-Distributed Stochastic Neighbor Embedding: April 15
- **O** Uniform Manifold Approximation & Projection: April 22

Outline

Theoretical Background

- Topology, Manifolds
- Manifold Approximation
- Projection

2 Remarks

- Extensions & Limitations
- Quiz

3 Examples

- Interactive Parameter Tuning
- Scripts

Introduction

Curse of Dimensionality

- increasing dimensions
- exponential growth of data space

Limitations of t-SNE

- time complexity: $O(n^2)$
- global data structure is not captured

sparse data

Goal

- preserve nonlinear relationships
- preserve global and local information
- higher flexibility
- better scalabity
- robustness to noise

Main Idea

Goal

- embed data points in low-dimensional space
- preserve local and global data structure
- similar data points in high-dimensional space remain close to each other
- distance of clusters of points should be preserved

Main Steps

- assume that the data is uniformly distributed on a high-dimensional manifold
- learn the manifold using Riemannian metrics
- embed the points in a low-dimensional Euclidean space

Table of Contents

Theoretical Background

- Topology, Manifolds
- Manifold Approximation
- Projection

2 Remarks

- Extensions & Limitations
- Quiz

3 Examples

- Interactive Parameter Tuning
- Scripts

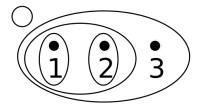
Topological Space

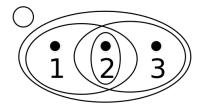
Topological Space

- $(X, \tau) : \tau \subseteq \mathcal{P}(X)$
- $\emptyset \in \tau$, $X \in \tau$
- $U_{\alpha} \in \tau \Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \tau$
- $U_i \in \tau \Longrightarrow \bigcap_{i=1}^n U_i \in \tau$

Examples

- trivial topology
- discrete space
- Euclidean space
- simplicial complex

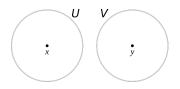


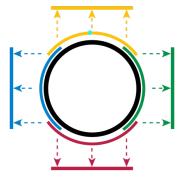


Manifold

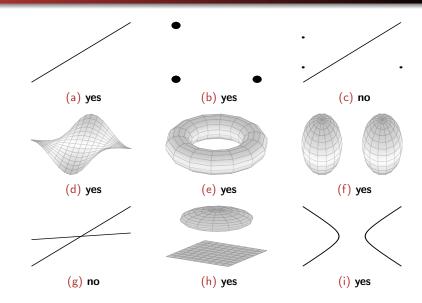
Manifold

- topological space
- second countable
- Hausdorff
- locally homeomorphic to \mathbb{R}^n





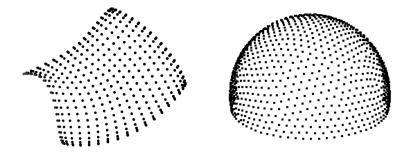
Is this a Manifold?



Peter Juhasz Uniform Manifold Approximation and Projection

UMAP Assumption

Assumption: data is uniformly distributed on a manifold



Given the data, how to approximate the manifold?

Simplicial Complex

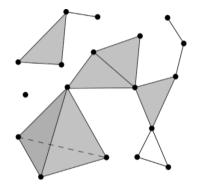
- simplicial complex: discrete topological space
- idea: approximate the manifold with a simplicial complex

Simplicial Complex

• (V, κ)

•
$$V \neq \emptyset, |V| < \infty$$

- $\kappa \subseteq \mathcal{P}(V)$
- $v \in V \Longrightarrow \{v\} \in \kappa$
- $\tau \in \kappa, \ \sigma \subset \tau \Longrightarrow \sigma \in \kappa$



Nerve

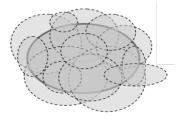
How to create a simplicial complex from a manifold?

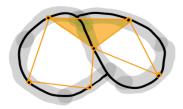
Cover
•
$$C = \{U_{\alpha} \subseteq X : \alpha \in A\}$$

• $X = \bigcup_{\alpha \in A} U_{\alpha}$

Nerve

- {U_α ⊆ X : α ∈ A} open cover of X
- $N(U_{\alpha})$: simplicial complex
- *i*-simplices: $\sigma \subseteq A$
- Supp $(\sigma) := \bigcap_{\alpha \in \sigma} U_{\alpha} \neq \emptyset$





Homotopy Equivalence

Homotopy

- X, Y topological spaces
- $f,g \in C^0: X \to Y$
- $\Theta \in C^0 : X \times [0,1] \rightarrow Y$
- $\Theta(x,0) = f(x)$ $\Theta(x,1) = g(x)$

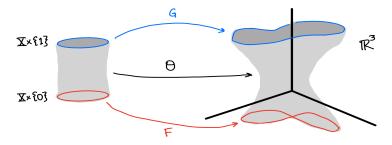
Homotopy Equivalence

• X, Y topological spaces

•
$$f \in C^0 : X \rightarrow Y;$$

 $g \in C^0 : Y \rightarrow X$

• $g \circ f$ homotopic to id_X ; $f \circ g$ homotopic to id_Y



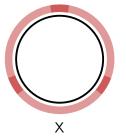
Nerve Theorem

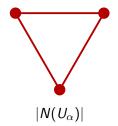
Nerve Theorem

- X topological space
- $\{U_{\alpha} \subseteq X : \alpha \in A\}$ open cover
- $\sigma \in N(U_{\alpha}) \Longrightarrow \operatorname{Supp}(\sigma)$ homotopy equivalent to a point

$$\Rightarrow$$

 $|N(U_{\alpha})|$ homotopy equivalent to X





Back to the Data

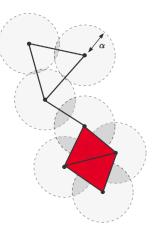
- goal: build a simplicial complex representing the manifold
- idea: cover the manifold with ε -balls $B_{\varepsilon}(p) = \{q \in M : d(p,q) < \varepsilon\}$
- two options: Čech complex, Vietoris-Rips complex

Čech Complex

Čech Complex

 simplices: set of points such that the covering ε-balls have a nonempty intersection

•
$$\sigma = \{ p_i \in M : \bigcap_i B_{\varepsilon}(p_i) \neq \emptyset \}$$

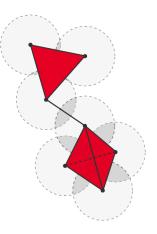


Vietoris–Rips Complex

Vietoris–Rips Complex

• simplices: set of points such that all pairs are within 2ε distance of each other

•
$$\sigma = \{p_i, p_j \in M : p_j \in B_{2\varepsilon}(p_i)\}$$



Uneven Data Distribution

. ·

fine if data is uniformly distributed, but in reality:

Idea: find metric such that the data is uniform

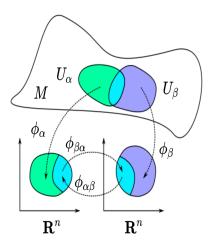
Differentiable Manifolds

Chart

- (U, ϕ) ; $U \subseteq M$ open
- $\phi: U \to \mathbb{R}^n$
- ϕ homeomorphism

Differentiable Manifold

- domain of charts can overlap
- transition functions: maps between overlapping charts
- transition functions must be differentiable



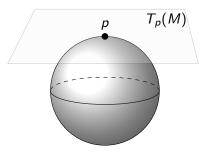
Riemannian Metric

Tangent Space

- $\gamma(t) \in C^0$: $\mathbb{R} \to M$
- $p \in \gamma(t)$
- tangent vector: $v_{p} := \dot{\gamma}(p)$
- T_pM = Span({tangent vectors})

Riemannian Metric

- find a basis for each tangent space
- assign inner product to each tangent space

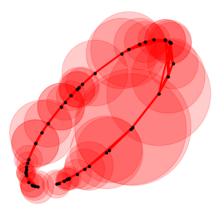


Theorem

 every differentialble manifold admits a Riemannian metric

Local Notion of Distance

- local notion of distance for each point
- in local metric, unit balls contain k nearest neighbors
- choose a number of neighbors instead of the distance
- k small: local metric, higher variance
 k large: global metric, higher bias



High-Dimensional Distance Metrics

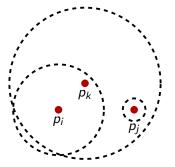
- not only the Euclidean distance can be used (and scaled)
- we can choose different metrics as well

Some Metrics

- Euclidean metric: $d(p_i, p_j) = \sqrt{\sum_{k=1}^m (p_{ik} p_{jk})^2}$
- Chebyshev metric: $d(p_i, p_j) = \max_k |p_{ik} p_{jk}|$
- Minkowski metric: $d(p_i, p_j) = \left(\sum_{k=1}^m |p_{ik} p_{jk}|^r\right)^{1/r}$
- cosine metric: $d(p_i, p_j) = 1 \frac{p_i \cdot p_j}{||p_i||_2 ||p_j||_2}$
- Mahalanobis metric: $d(p_i, p_j) = \sqrt{(p_i p_j)^T M(p_i p_j)}$

Incompatible Local Metrics

Incompatible local metrics



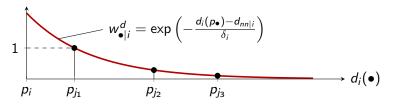
Which edges should be included?

Solution: fuzzy simplices

- based on the local metric at point p_i , assign a fuzzy value $w_{\sigma|i}^d$ to the edges σ
- create fuzzy edges from each point
- take the fuzzy union of all edges (simplicial complexes)

Exponential Kernel

Fuzzy values are determined by the exponential kernel



Local Metric

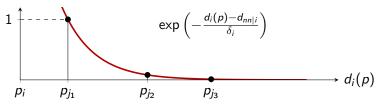
- $d_i(\bullet)$: distance in local metric
- unit ball radius: kernel shifted by distance to nearest neighbor
- local connectedness assumption: no isolated points (nearest neighbor has fuzzy value 1)

Bandwidth

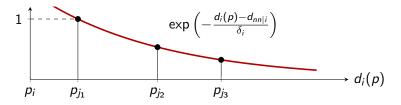
- bandwidth δ_i depends on the point
- higher δ_i: points further away contribute more

Theory Remarks Examples Manifolds Approximation Projection Effect of Bandwidth

• lower δ_i : further points have lower fuzzy value



• higher δ_i : further points have higher fuzzy value



Number of Neighbors

- bandwidth is adapted to the density: δ_i is smaller in denser parts of the data space
- δ_i determines the number of neighbors $N_n(p_i)$ of point p_i in the local metric

$$\log_2(N_n(p_i)) := \sum_j w_{j|i}^d$$

- δ_i is tuned $N_n(p_i)$ matches a predefined value N_n
- fuzzy value of nearest neighbors is always 1
- algorithm for nearest neighbors: Nearest Neighbor Descent

Fuzzy Union

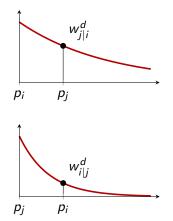
Incompatible local metrics: asymmetrical fuzzy values Fuzzy union: symmetrize fuzzy values

Example

- w^d_{j|i}, w^d_{j|i}: fuzzy values of p_j, p_i with respect to the local metric of p_i, p_j
- edges: combine local metrics by

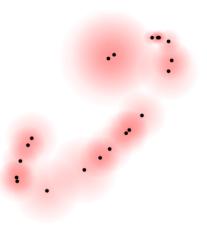
$$w_{ij}^d := w_{j|i}^d + w_{i|j}^d - w_{j|i}^d \cdot w_{i|j}^d$$

 w^d_{ij}: symmetrical; probability that the edge exists from at least in one of the points



Fuzzy Topology

- weight edges with a function of the length in local metric
- fuzzy value: certainty that a point is in a ball of a given radius
- union of fuzzy complexes: simplicial complex
- mathematical foundation: UMAP Adjunction Theorem



Exercise – Fuzzy Simplicial Complex

Theory Remarks Examples

create a fuzzy simplicial complex using the Chebyshev metric

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 + \ln(2) \\ 1 + \ln(4) & 1 \end{bmatrix} \delta = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\delta = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\delta = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$g \text{ fuzzy values } w_{j|i}^{d} (exponential kernel)$$

$$\delta \text{ fuzzy union } w_{ij}^{d}$$

$$D_{X} = \begin{bmatrix} 0 & \ln(2) & \ln(4) \\ \ln(2) & 0 & \ln(4) \\ \ln(4) & \ln(4) & 0 \end{bmatrix}$$

$$d_{nn} = \begin{bmatrix} \ln(2) \\ \ln(2) \\ \ln(2) \\ \ln(4) \end{bmatrix}$$

$$w_{j|i}^{d} = \frac{1}{2} \begin{bmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 2 & 2 & 0 \end{bmatrix}$$

$$w_{ij}^{d} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Interesting: each edge surely exists. But why?

Manifolds Approximation Projection

Projection

Goal: embed simplicial complex into a low-dimensional Euclidean space

Tasks	Known	Question
Approximation	positions	manifold, metric
Projection	manifold, metric	positions

Idea: initialize a fuzzy simplicial complex in the embedding space; minimize cross entropy

Initializing Embedding Positions

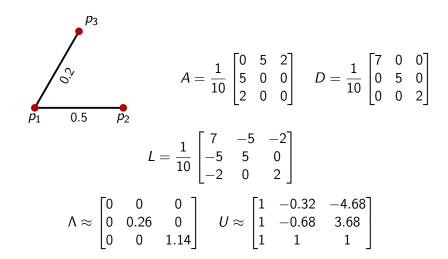
Initialization of Embeddings

- set the dimension of the embedding space
- consider only edges
- create a weighted graph of k nearest neighbors
- initialize the graph using spectral embedding

Spectral Embedding

- weight matrix of edges: $A_{ij} = w_{ij}^d$
- diagonal degree matrix: $D_{ii} = \sum_{j} A_{ij}$
- graph Laplacian: L = D A
- calculate the eigenvalue decomposition of L: $L = U\Lambda U^T$
- consider the eigenvectors corresponding to the **smallest nonzero** eigenvalues

Exercise – Spectral Embedding



Fuzzy Values in the Embedded Simplicial Complex

Embeddings

- low-dimensional embedding of p_i : q_i
- typically $q_i \in \mathbb{R}^2$ or \mathbb{R}^3

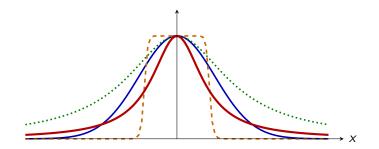
Fuzzy Values

• similarities of embeddings: based on *t*-distribution

$$w_{ij}^{e} := w^{e}(q_{i}, q_{j}) := rac{1}{1 + lpha ||q_{j} - q_{i}||_{2}^{2\beta}} \quad (i \neq j) \qquad w_{ii} := 0$$

- α : lower values increase the spread of embeddings
- β : higher values increase the minimum distance between embeddings

Effect of Parameters



- fuzzy values as a function distance has fat tails
- fuzzy values are higher further away
- embeddings spread out

- Gaussian curve
- base case
- $\bullet~{\rm decreased}~\alpha$
- increased β

Objective

Objective

- goal: learn positions of embeddings q_i
- fuzzy values w^e of embeddings q_i should reflect fuzzy values w^d of the data p_i
- minimize "distance" between w^e and w^d

Idea

- consider the cross entropy $H(w^e, w^d)$
- minimize $H(w^e, w^d)$ by adjusting the embeddings

Cross Entropy

Definition

- cross entropy
- measure of dissimilarity between distributions
- expectation of logarithmic probabilities of other distribution:

$$H(P,Q) = \mathbb{E}_P\left[\ln(1/Q)\right] = -\sum_{x \in X} P(x) \, \ln(Q(x))$$

Relationships

- Kullback-Leibler Divergence: $D_{KL}(P||Q)$
- cross entropy: $H(P, Q) = H(P) + D_{KL}(P||Q)$

Properties

- $H(P,Q) \ge 0$; $H(P,Q) = 0 \iff P = Q$
- $H(P,Q) \neq H(Q,P)$

Cross Entropy in Our Case

- fuzzy simplicial complex: each edge (simplex) σ is assigned a weight
- Bernoulli distribution: σ exists with probability w_{σ}
 - w_{σ}^{d} in the simplicial complex for the data
 - w^e_σ in the simplicial complex for the embedding

$$H(w^{d}, w^{e}) = \sum_{i \neq j} \left(\underbrace{w_{ij}^{d} \ln \left(\frac{w_{ij}^{d}}{w_{ij}^{e}} \right)}_{\text{term for } i \leftrightarrow j \text{ exists}} + \underbrace{\left(1 - w_{ij}^{d} \right) \ln \left(\frac{1 - w_{ij}^{d}}{1 - w_{ij}^{e}} \right)}_{\text{term for } i \leftrightarrow j \text{ does not exist}} \right)$$

• force-directed graph layout: minimizing $H(w^d, w^e)$ by adjusting the embeddings

Stochastic Gradient Descent Optimization

Cross Entropy

- minimize H(w^d, w^e)
- stochastic gradient descent: iteratively update embeddings
- move similar (dissimilar) points closer together (further apart)

Simplified Algorithm

- choose an embedding q_i uniformly randomly
- attractive force: choose $q_{j,a}$ from its neighborhood (probability \sim fuzzy value)
- repulsive force: choose $q_{j,r}$ uniformly randomly from points not in the neighborhood
- balance attractive and repulsive forces using cost function

Gradient

 iteratively update embeddings with learning rate α:

$$q_i^{(t+i)} := q_i^{(t)} - \alpha \frac{\partial D_{KL}}{\partial q_i^{(t)}}$$

Steps of UMAP

Data Points

- build data matrix
- calculate fuzzy values
- find δ_i for each point
- symmetrize fuzzy values

Embeddings

- initialize embeddings
- calculate fuzzy values

Cross Entropy

- consider cross entropy
- stochastic gradient descent

• X

•
$$w_{j|i}^d = \exp\left(-(d_{j|i} - d_{nn|i})/\delta_i\right)$$

•
$$\log_2(N_n) = \sum_j w_{j|i}$$

•
$$w_{ij}^d = w_{i|j} + w_{j|i} - w_{i|j} \cdot w_{j|i}$$

•
$$Y_{\text{init}}$$

• $w_{ij}^e \sim 1/(1 + \alpha ||y_j - y_i||_2^{2\beta})$

•
$$H = \sum w_{ij}^d \ln(w_{ij}^d / w_{ij}^e) + (1 - w_{ij}^d) \ln((1 - w_{ij}^d) / (1 - w_{ij}^e))$$

•
$$y_i := y_i - \alpha \frac{\partial H}{\partial y_i}$$

Main UMAP Parameters

Nearest Neighbors

- k: number of nearest neighbors
- adjusts the bandwidth
- k small: local metric
- k large: global metric

Number of Components

- dimension of embedding space
- 2 or 3: visualization
- > 3: density based clustering

Minimum Distance

- adjusts how close embeddings can be
- low values: clumpier embeddings
- high values: embeddings spread out more

Distance Metric

• metric for high-dimensional space

Table of Contents

Theoretical Background

- Topology, Manifolds
- Manifold Approximation
- Projection

2 Remarks

- Extensions & Limitations
- Quiz

3 Examples

- Interactive Parameter Tuning
- Scripts

Some Remarks

Supervised Learning

- create embeddings from training set, then embed new, unseen data points
- labels: separate metric space; use fuzzy intersection to combine complexes

Aligned UMAP

- it is possible to align two UMAP embeddings
- optimize both embeddings in parallel
- apply constraint to shared points

Combining UMAP Models

- if two UMAP models operate on the same data
- use fuzzy topology to combine fuzzy simplicial complexes

Non-Euclidean Embeddings

- it is possible to embed data in non-Euclidean spaces
- set the embedding space dimension
- use a different metric for the embedding space

Limitations

Nonuniform Data

 may not perform well on non-uniform density

Limited Interpretability

 low-dimensional embeddings are hard to interpret

Transformation Bias

 data might not lie on a low-dimensional manifold

Sensitivity

- sensitive to choice of hyperparameters
- interactive tuning is required
- wrong choice may lead to false findings

Quiz – t-SNE, UMAP, or Both?

Which one ...

- is more scaleable?
- preserves more of the global structure?
- should we consider for larger data sets?
- interprets distances of clusters better?
- is sensitive to the choice of parameters?
- runs in a reproduceable manner?
- uses a force-directed graph layout?
- is more mathematically justified?
- is a nonlinear algorithm?

- UMAP
- UMAP
- UMAP
- UMAP
- both
- t-SNE
- UMAP
- UMAP
- both

Table of Contents

Theoretical Background

- Topology, Manifolds
- Manifold Approximation
- Projection

2 Remarks

- Extensions & Limitations
- Quiz

3 Examples

- Interactive Parameter Tuning
- Scripts

Interactive Examples

- Understanding UMAP
- Tensorflow Embedding Projector
- UMAP Explorer
- Visualizing UMAP

UMAP in Python & R

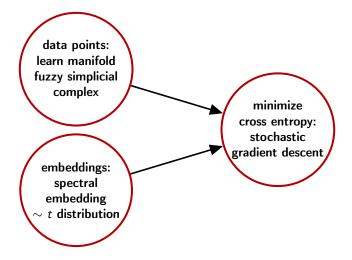
		Python	R
•	load library	import umap.umap_ as umap	library(umap)
•	load dataset	data: npt.NDArray =	data <
•	create UMAP object	model = umap.UMAP(n_neighbors=5, min_dist=0.3,)	
•	fit model	embedding = model.fit_transform(data)	umap(data)

R Examples

R Examples

Peter Juhasz Uniform Manifold Approximation and Projection

Summary



Q & A

Resources

- Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel WH Kwok, Lai Guan Ng, Florent Ginhoux, and Evan W Newell, Dimensionality reduction for visualizing single-cell data using umap, Nature biotechnology 37 (2019), no. 1, 38–44.

Wei Dong, Charikar Moses, and Kai Li, *Efficient k-nearest neighbor graph construction for generic similarity measures*, Proceedings of the 20th international conference on World wide web, 2011, pp. 577–586.

- Alex Diaz-Papkovich, Luke Anderson-Trocmé, and Simon Gravel, *A review of umap in population genetics*, Journal of Human Genetics **66** (2021), no. 1, 85–91.

Dmitry Kobak and George C Linderman, *Initialization is critical for preserving global data structure in both t-sne and umap*, Nature biotechnology **39** (2021), no. 2, 156–157.

Manifold, *Manifold — Wikipedia, the free encyclopedia,* 2024, [Online; accessed 15-April-2024].

Vidit Nanda, Computational algebraic topology, Lecture Notes.