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Introduction

Curse of Dimensionality
increasing dimensions
exponential growth of data
space
sparse data

Limitations of Traditional
Techniques

only global structure is
considered
nonlinear relationships are
not captured

Goal
reduce number of features
nonlinear dimensionality reduction
preserve global and local information
visualization, interpretation
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Main Idea

Goal
embed data points in low-dimensional space
fine-grained relationships: preserve local structure
similar data points in high-dimensional space remain close to
each other with high probability

Main Steps
construct probability distribution over pairs of
high-dimensional points
define similar probability distribution over pairs of
low-dimensional points
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Similarities

Euclidean distance
data matrix: X =

[
x1 · · · xn

]T
calculate Euclidean distance for each pair: ||xi − xj ||

Conditional Probabilities
similarity of xj to xi = conditional probability pj |i

use Gaussian kernel to define probabilities pj |i :

pj |i ∼ exp

(
−
||xj − xi ||2

2σ2
i

)
(i ̸= j) Pi |i := 0

pj |i = probability that xi would pick xj as its neighbor
normalization: pj |i must be normalized for each data point i
not symmetric: pj |i ̸= pi |j

Symmetrization
symmetrize probabilities: pij = (pj |i + pi |j)/2N pij = pji
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Gaussian Kernel

xj1 xi xj2 xj3
x

exp
(
− ||xj−xi ||2

2σ2
i

)

σi depends on the point xi
higher σi : points further away contribute more
lower σi : points further away contribute less
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Effect of Bandwidth

xj1 xi xj2 xj3
x

lower σi : points further away contribute less

xj1 xi xj2 xj3
x

higher σi : points further away contribute more
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Perplexity

bandwidth is adapted to the density: σi is smaller in denser
parts of the data space
Shannon entropy of pj |i

Hi := E
[
log2

(
1
pj |i

)]
︸ ︷︷ ︸

surprise

= −
∑
j

pj |i (xj) log2 pj |i (xj)

Perplexity of xi :
Perp(xi ) := 2Hi

σi is tuned so that perplexity matches a predefined value R

bisection method: find σi with searching the root of
Perp(xi )− R = 0
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Remark: Student t-distribution

1 degree of freedom: Cauchy distribution
very fat tails

x
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Low-Dimensional Embeddings

Embeddings

low-dimensional embeddings of X : Y :=
[
y1 · · · yn

]T
typically Y ∈ RN×2 or RN×3

Similarities
similarities of embeddings: t-distribution

qij := Q (||yj − yi ||) ∼
1
π

1
1 + ||yj − yi ||2

(i ̸= j) Qii := 0

qij must be normalized
t-distribution (Cauchy distribution): heavy tails
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Back to the Objective

Objective
goal: learn embeddings Y

embedding similarities qij reflect original similarities pij

minimize "distance" between P and Q

Idea
minimize the Kullback-Leibler divergence DKL of P,Q
heavy tails in Q =⇒ embeddings of dissimilar points in X can
be far apart in Y
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Remark: Kullback-Leibler Divergence

Definition
relative entropy = Kullback-Leibler divergence
measure of dissimilarity between distributions
expectation of (base 2 or base e) logarithmic difference

DKL (P||Q) = −
∑
x∈X

P(x) ln

(
Q(x)

P(x)

)
Properties

DKL ≥ 0
DKL(P||Q) = 0 ⇐⇒ P = Q

DKL(P||Q) ̸= DKL(Q||P)
absolute continuity: Q(x) = 0 =⇒ P(x) = 0 (∀x ∈ X )
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Minimization of Kullback-Leibler Divergence

Kullback-Leibler Divergence
aim: minimize DKL (P||Q) by adjusting Y

Gradient Descent
initialize embeddings

random initialization
principal component analysis

iteratively update embeddings with learning rate α:

∂DKL

∂yi
= 4

∑
i ̸=j

(pij − qij)(yi − yj)
1 + ||yj − yi ||2

yi := yi − α
∂DKL

∂yi
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Steps of t-SNE

Data Point Similarities
build data matrix
calculate, normalize pj |i

find σi for each point
symmetrize similarities

X

pj |i ∼ exp
(
−||xj − xi ||2/(2σ2

i )
)

R = 2−
∑

j pj|i (xj ) log2 pj|i (xj )

pij = (pi |j + pj |i )/(2N)

Embedding Similarities
initialize embeddings
calculate, normalize Q

Yinit

qij ∼ 1/(1 + ||yj − yi ||2)

Kullback–Leibler Divergence
consider DKL

calculate gradient

update embeddings

DKL (P||Q) =
∑

pij ln (pij/qij)

∂DKL
∂yi

= 4
∑

i ̸=j
(pij−qij )(yi−yj )

1+||yj−yi ||2

yi := yi − α ∂DKL
∂yi
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Exercise – One Iteration of t-SNE

X =

 1 2
1 2 +

√
ln(3)

1 +
√

ln(2) 2

 Yinit =

1
2
3

 σ =

√
2

2

1
1
1

 α = 1

DX =

 0
√

ln(3)
√

ln(2)√
ln(3) 0

√
ln(6)√

ln(2)
√

ln(6) 0

 DY =

0 1 2
1 0 1
2 1 0



pj |i =

 0 2/5 3/5
2/3 0 1/3
3/4 1/4 0

 pij =

 0 8/45 9/40
8/45 0 7/72
9/40 7/72 0

 qij =
1
24

0 5 2
5 0 5
2 5 0



DKL(P||Q) =
∑
i ̸=j

pij ln

(
pij
qij

)
= 0.2424

∂DKL

∂yi
=

 0.1656
−0.2833

0.0044

 Yupd =

1.1656
1.7167
3.0044
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Exercise – One Iteration of t-SNE

Data Points

1 1 +
√

ln(2)

2
2
+

√ ln
(3
)

Embeddings

1 2 3

1 2 3
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Parameter Tuning

Interactive Examples
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Limitations

Curse of Dimensionality
Gaussian kernel uses
Euclidean distance
other distance metrics may
be used (UMAP)

Complexity
pairwise similarities:
computationally expensive
time complexity: O(n2)
space complexity: O(n2)

Sensitivity
sensitive to parametrization
sensitive to initialization of
embeddings
interactive parameter
tuning required
non-deterministic results

False Findings
finds clusters in
nonclustered data
hard to interpret results

Peter Juhasz t-Distributed Stochastic Neighbor Embedding



Theory Exercise Remarks Quiz R Examples

Optimizations, Variants

Barnes-Hut Approximation
approximate long-range
similarities
replace group of distant
points with center of mass
reduced time complexity:
O(n2) → O(n log n)

Early Exaggeration
goal: avoid local minima
increase pij for the first few
iterations
points close to each other
move together

Momentum Gradient
Descent

note momentum (previous
step directions)
update = weighted sum of
current and previous
gradients

Similarity Cutoff
neglect similarities if
||xj − xi || > 3σi
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Quiz — True or False?

The data matrix X must be normalized
Similarities pj |i of X — when normalized — are
characterized by a Gaussian density function
Increasing perplexity leads to preserving more
the local structure, leading to higher variance,
lower bias
Outliers are assigned to the nearest cluster
t-SNE would work if the similarities of the
embeddings Q were Gaussian
Distribution of tossing a coin has a higher
Shannon–entropy than rolling a die

False
False

False

False
True

False
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Steps of t-SNE in R

Load library

Load dataset

Remove duplicates

Perform t-SNE

Interpret / visualize results

library(Rtsne)

data(iris) or read.csv()

uniq <- unique(iris)

tsne <- Rtsne(uniq[-5])

plot <- data.frame(...)
ggplot2::ggplot(...)
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R Examples

R Examples
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Summary

goal: reduce dimensionality + preserve local structures

similarities of
data points:

Gaussian kernel

similarities of
embeddings:
t-distribution

minimize K-L
divergence:

gradient descent
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Q & A
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