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Introduction

What is PCA?
statistical dimensionality reduction technique
identifies patterns in data, simplifies representation

Definition Purpose
Linear dimensionality
reduction
feature extraction
noise reduction
visualization, interpretation

Applications
image processing,
compression
machine learning
data analysis
signal processing

Peter Juhasz Principal Component Analysis



Introduction Theory Exercise R Examples Conclusion

Main Idea

Data Transformation
goal: find new basis (principal components) to capture
maximum variance
principal components are uncorrelated (orthogonal)

Maximizing Variance
first principal components capture the most variance of the
data with 1 dimension
subsequent components capture the remaining variance in
decreasing order

Uncorrelated Features
principal components are uncorrelated (orthogonal)
principal components: new, independent features
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Mathematical Foundation

Relationships of Features
data matrix: X ∈ Mn×m (n points, m features)
correlation structure of data: covariance matrix
Σ̂ = 1/(n − 1)XTX

Eigenvalue decomposition
eigenvalue decomposition: Σ̂ = QΛQ−1

eigenvectors of Σ̂ represent directions of maximum variance
eigenvectors of covariance matrix: principal components
Σ̂ has orthogonal eigenvectors
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Example
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Explained Variance Ratio

Explained Variance Ratio
How much variance is explained by each principal component?
How many components should we keep?
Explained variance ratio: proportion captured variance
EVRi = |λi |/

∑m
j=1 |λj |

Dimensionality Reduction
keep components with high explained variance ratios
discard components with low ratios

Scree Plot
visual representation of explained variance ratios
eigenvalues vs component index
determine number of components: elbow method
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Component Loadings

Definition
Component loadings: correlation between original features and
principal components
Contribution of each feature to the principal component

Interpretation
Loading plots: loading values for each feature across different
principal components
Help to understand principal components using original
features
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Steps of PCA

1 build data matrix

2 standardization

3 covariance matrix

4 eigenvalue decomposition

5 select principal components

6 transform data

7 interpret results:
plot X̃trans check Q

X =
[
x1 · · · xm

]
∈ Mn×m

x̃i := (xi − µ̂(xi))/σ̂(xi)

Σ̂ = 1/(n − 1) X̃T X̃

Σ̂ = QΛQ−1

EVRi = |λi |/
∑

j |λj |

X̃trans = X̃ Qreduced
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Connection with Singular Value Decomposition

X ∈Cn×m =⇒ X = U S V T

U ∈ Cn×n, unitary: UT = U−1

S ∈ Rn×m
≥0 , diagonal

V ∈ Cm×m, unitary: V T = V−1

PCA
Σ̂ = 1/(n − 1) X̃T X̃

Σ̂ = QΛQ−1

X̃T X̃ = (n − 1)QΛQ−1

SVD
X̃ = U S V T

X̃T X̃ = V (STS)V T

X̃T X̃ = V S2 V−1
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Limitations

Linearity Assumption
PCA only discovers linear relationships
Non-linear relationships may be lost

Scaling
PCA is sensitive to the scaling of the features
features with larger scales dominate principal components

Interpretability
principal components are hard to interpret
meaning of components may not be clear
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Does PCA Help?

(a) yes (b) no (c) yes

(d) yes (e) not always (f) no
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Exercise

X =


2 3 4
3 2 1
1 5 3
4 4 5
5 1 2

 X̃ =
√

2
5


−1 0 1

0 −1 −2
−2 2 0

1 1 2
2 −2 −1


Σ̂ = 1

10

 10 −7 −1
−7 10 6
−1 6 10

 = QΛQ−1

∣∣∣Σ̂− λI
∣∣∣ = 1

103

((
λ
10

)3 − 30
(
λ
10

)2
+ 214 λ

10 − 224
)
= 0

Λ =

1.97 0 0
0 0.90 0
0 0 0.13

 Q =

−0.54 0.65 −0.53
0.69 −0.02 −0.73
0.48 0.76 0.44


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Exercise

EVR = [0.66, 0.30, 0.04] =⇒ first two explains 96%

X̃trans =


1.02 0.11

−1.65 −1.50
2.46 −1.34
1.11 2.15

−2.94 0.58

 L =

−0.54 0.65
0.69 −0.02
0.48 0.76


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Steps of PCA in R

Load dataset
data(iris) or read.csv()

Perform PCA
pca <- prcomp(iris[, -5], scale. = TRUE)

Interpret / visualize results
summary(pca)
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R Examples

R Examples
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Summary

goal: dimensionality reduction, feature extraction

eigenvalue decomposition of the covariance matrix:
relationship with SVD

principal components = eigenvectors of the covariance matrx

basis transformation to principal components
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Q & A
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