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Introduction
Introduction

What is PCA?
@ statistical dimensionality reduction technique

o identifies patterns in data, simplifies representation

Definition Purpose Applications
@ Linear dimensionality @ image processing,
reduction compression
o feature extraction @ machine learning
@ noise reduction o data analysis
@ visualization, interpretation @ signal processing
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Theory
Main Idea

Data Transformation

@ goal: find new basis (principal components) to capture
maximum variance

@ principal components are uncorrelated (orthogonal)

Maximizing Variance

o first principal components capture the most variance of the
data with 1 dimension

@ subsequent components capture the remaining variance in
decreasing order

Uncorrelated Features
@ principal components are uncorrelated (orthogonal)

@ principal components: new, independent features
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Theory
Mathematical Foundation

Relationships of Features
e data matrix: X € M« (n points, m features)
@ correlation structure of data: covariance matrix
Y=1/(n—1)XTX
Eigenvalue decomposition
o eigenvalue decomposition: ¥ = QAQ™!
@ eigenvectors of S represent directions of maximum variance
@ eigenvectors of covariance matrix: principal components

e 3 has orthogonal eigenvectors
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Theory

Example

Peter Juhasz Principal Component Analysis



Theory
Explained Variance Ratio

Explained Variance Ratio
@ How much variance is explained by each principal component?
@ How many components should we keep?
@ Explained variance ratio: proportion captured variance
EVR; = [Nil/ 32721 Il
Dimensionality Reduction
o keep components with high explained variance ratios

@ discard components with low ratios

Scree Plot
@ visual representation of explained variance ratios
@ eigenvalues vs component index

@ determine number of components: elbow method
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Theory
Component Loadings

Definition
o Component loadings: correlation between original features and
principal components

@ Contribution of each feature to the principal component

Interpretation

@ Loading plots: loading values for each feature across different
principal components

@ Help to understand principal components using original
features
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Steps of PCA

@ build data matrix o X=[x1 - Xm| €Mpxm
@ standardization ® X := (xi — fi(xi))/5(xi)

© covariance matrix oY =1/(n—1)XT X

@ eigenvalue decomposition o ¥ =QAQ!

@ select principal components o EVR; = [\i|/ > [\

Q@ transform data ° )?trans - X Qreduced

@ interpret results:

plot )?tmns check @
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Theory
Connection with Singular Value Decomposition

X eCc™m
U e C™" unitary: UT = U1
S € RIY™, diagonal
V e C™™ unitary: VT = V1
PCA SVvD
XTX o X=USVT

o3
oS =QAQ! o XTX=V(STS)VT
o XTX e XTX=Vvs2y!
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Theory
Limitations

Linearity Assumption
o PCA only discovers linear relationships

@ Non-linear relationships may be lost

Scaling
@ PCA is sensitive to the scaling of the features

o features with larger scales dominate principal components

Interpretability
@ principal components are hard to interpret

@ meaning of components may not be clear
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Theory

Does PCA Help?

(d) yes (e) not always (f) no
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Exercise
Exercise

2 3 4 -1 0 1
321 0 -1 -2
X=1]15 3 X=4/21-2 2 0
4 4 5 11 2
51 2 2 -2 -1
10 -7 -1
=4 -7 10 6| =QAQ!
-1 6 10
~ 3 2
£ | = s ((35)° —30(35)” +214 35 — 224) = 0
197 0 0 —-054 065 —0.53
A=|0 09 0 Q=| 069 —0.02 —0.73
0 0 013 048 076  0.44
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Exercise
Exercise

EVR = [0.66, 0.30, 0.04] = first two explains 96%

1.02 0.11
~1.65 —1.50 —0.54  0.65

Xirans = | 2.46 —1.34 L= 0.69 —0.02
111 215 0.48  0.76
~294 058
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Steps of PCA in R

o Load dataset
data(iris) or read.csv()

@ Perform PCA
pca <- prcomp(iris[, -5], scale. = TRUE)

@ Interpret / visualize results
summary(pca)
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R Examples
R Examples

R Examples
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Conclusion

Summary

@ goal: dimensionality reduction, feature extraction

@ eigenvalue decomposition of the covariance matrix:
relationship with SVD

@ principal components = eigenvectors of the covariance matrx

@ basis transformation to principal components
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Conclusion

Q& A
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Conclusion
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