On the Topology of Higher-Order Age-Dependent Random Connection Models

Christian Hirsch, Peter Juhasz

Department of Mathematics Aarhus University

September 8, 2023

Topology of Higher-Order Networks

< 同 > < 三 >

Higher-Order Networks

3 Age-Dependent Random Connection Model

Topology of Higher-Order Networks

(4 同) (1 日) (1 日)

2

Higher-Order Networks

Topology of Higher-Order Networks

Higher-Order Networks

Topology of Higher-Order Networks

Publications of Authors in Statistics

Hig	her-	Ord	er N	letwo	rke
		0.0	. .		

A

Results

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

Hig	her-	Ord	er N	letwo	rke
		0.0	. .		

A

Results

Topology of Higher-Order Networks

イロト イヨト イヨト イヨト

æ

ADRCM

Results

Goal

Topology of Higher-Order Networks

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト …

Age-Dependent Random Connection Model

Gracar, Peter, et al. "The age-dependent random connection model." *Queueing Systems* 93 (2019): 309-331.

イロト イポト イヨト イヨト

Age-Dependent Random Connection Model

Gracar, Peter, et al. "The age-dependent random connection model." *Queueing Systems* 93 (2019): 309-331.

• Vertices: Poisson process $\mathcal{P}\{(x_i, t_i)\} \subset \mathbb{R} \times [0, 1]$

(4 同) (4 回) (4 回)

Age-Dependent Random Connection Model

Gracar, Peter, et al. "The age-dependent random connection model." *Queueing Systems* 93 (2019): 309-331.

- Vertices: Poisson process $\mathcal{P}\{(x_i, t_i)\} \subset \mathbb{R} \times [0, 1]$
- Connections: $\delta_{ij} \leq \frac{1}{2} t_i^{-\gamma} t_j^{\gamma-1}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Results

Age-Dependent Random Connection Model

Gracar, Peter, et al. "The age-dependent random connection model." *Queueing Systems* 93 (2019): 309-331.

- Vertices: Poisson process $\mathcal{P}\{(x_i, t_i)\} \subset \mathbb{R} \times [0, 1]$
- Connections: $\delta_{ij} \leq \frac{1}{2} t_i^{-\gamma} t_j^{\gamma-1}$

Age-Dependent Random Connection Model

Gracar, Peter, et al. "The age-dependent random connection model." *Queueing Systems* 93 (2019): 309-331.

- Vertices: Poisson process $\mathcal{P}\{(x_i, t_i)\} \subset \mathbb{R} \times [0, 1]$
- Connections: $\delta_{ij} \leq \frac{1}{2} t_i^{-\gamma} t_j^{\gamma-1}$
- Click for Graph

Age-Dependent Random Connection Model

Gracar, Peter, et al. "The age-dependent random connection model." *Queueing Systems* 93 (2019): 309-331.

- Vertices: Poisson process $\mathcal{P}\{(x_i, t_i)\} \subset \mathbb{R} \times [0, 1]$
- Connections: $\delta_{ij} \leq \frac{1}{2} t_i^{-\gamma} t_j^{\gamma-1}$
- Click for Graph

Properties if $\gamma \in \left(\frac{1}{2}, 1\right)$:

- 🗸 sparse
- 🗸 scale-free
- 🗸 ultra small
- ✓ high clustering
- \times graphical model

э

Research Outline

• Consider ADRCM as a "clique complex"

Topology of Higher-Order Networks

《口》《聞》《臣》《臣》

Research Outline

- Consider ADRCM as a "clique complex"
- Determine characteristics of ADRCM as a higher-order network

・ 同 ト ・ ヨ ト ・ ヨ ト

Research Outline

- Consider ADRCM as a "clique complex"
- Determine characteristics of ADRCM as a higher-order network
- Extend ADRCM to match a larger number of characteristics

Research Outline

- Consider ADRCM as a "clique complex"
- Determine characteristics of ADRCM as a higher-order network
- Extend ADRCM to match a larger number of characteristics
- Illustrate the findings on simulated networks and on real data

ADRCM

Results

2

Higher-Order Degree Distributions

Topology of Higher-Order Networks

・ロト ・部ト ・ヨト ・ヨト

ADRCM

Results

Higher-Order Degree Distributions

Topology of Higher-Order Networks

イロト イヨト イヨト イヨト

э

ADRCM

Results

э

Higher-Order Degree Distributions

Topology of Higher-Order Networks

- 4 同 1 - 4 回 1 - 4 回 1

Higher-Order Degree Distribution – Statistics Theory

Topology of Higher-Order Networks

《口》《聞》《臣》《臣》

Results

CLT for Betti Numbers

Topology of Higher-Order Networks

イロト イヨト イヨト イヨト

Results

CLT for Betti Numbers

Topology of Higher-Order Networks

イロト イヨト イヨト イヨト

CLT for Betti Numbers

• $\gamma \ll 1$ • $\frac{\beta_n - \mathbb{E}[\beta_n]}{\sqrt{\operatorname{Var}(\beta_n)}} \xrightarrow{d} \mathcal{N}(0, 1)$

Topology of Higher-Order Networks

・ロト ・四ト ・ヨト ・ヨト

Distribution of Edge Count

Topology of Higher-Order Networks

イロト イヨト イヨト イヨト

Distribution of Edge Count

CLT for Edge Count

- $\gamma < 1/2$
- S_n : number of *m*-simplices in the interval [0, *n*]

•
$$\frac{S_n - \mathbb{E}[S_n]}{\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Distribution of Edge Count

CLT for Edge Count

- $\gamma < 1/2$
- S_n : number of *m*-simplices in the interval [0, *n*]

•
$$\frac{S_n - \mathbb{E}[S_n]}{\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$

Stable Limit Law for Edge Count

- $1/2 < \gamma < 1$
- *S_n* : number of edges in the interval [0, *n*]

・ 同 ト ・ ヨ ト ・ ヨ ト

•
$$\frac{S_n - \mathbb{E}[S_n]}{n^{\gamma}} \xrightarrow{d} \mathcal{S}(1/\gamma)$$

Stable Distribution of Edge Counts

Topology of Higher-Order Networks

æ

Stable Distribution of Edge Counts

æ

Thinned Model

Topology of Higher-Order Networks

イロト イヨト イヨト イヨト

• Goal: match the $d_{0,1}$ and $d_{1,2}$ exponents separately (if $n \to \infty$)

《曰》《聞》《臣》《臣》

- Goal: match the $d_{0,1}$ and $d_{1,2}$ exponents separately (if $n o \infty$)
- $\bullet\,$ Observation: high edge degree \Longrightarrow both endpoints are old

(4 同) (1 日) (1 日)

Thinned Model

- Goal: match the $d_{0,1}$ and $d_{1,2}$ exponents separately (if $n o \infty$)
- ullet Observation: high edge degree \Longrightarrow both endpoints are old
- Solution: remove edges that do not affect exponent of $d_{1,2}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Thinned Model

- Goal: match the $d_{0,1}$ and $d_{1,2}$ exponents separately (if $n o \infty$)
- ullet Observation: high edge degree \Longrightarrow both endpoints are old
- Solution: remove edges that do not affect exponent of $d_{1,2}$

ADRCM

Thinned Model

- Goal: match the $d_{0,1}$ and $d_{1,2}$ exponents separately (if $n o \infty$)
- ullet Observation: high edge degree \Longrightarrow both endpoints are old
- Solution: remove edges that do not affect exponent of $d_{1,2}$

Thinned Model

ullet Remove exposed edges independently with probability $1-t_1^\eta$

Topology of Higher-Order Networks

伺 ト イヨ ト イヨト

э

・聞き ・ ヨキ・ ・ ヨキー

Thinned Model

• Remove exposed edges independently with probability $1-t_1^\eta$

•
$$\lim_{k\to\infty} d_{0,1}(k) \sim k^{-rac{1}{\eta-\gamma}}$$

|

э

・聞き ・ ヨキ・ ・ ヨキー

Thinned Model

• Remove exposed edges independently with probability $1-t_1^\eta$

•
$$\lim_{k \to \infty} d_{0,1}(k) \sim k^{-rac{1}{\eta - \gamma}}$$

•
$$\lim_{k\to\infty} d_{1,2}(k) \sim k^{1-\frac{2}{\gamma}}$$

Q & A

Topology of Higher-Order Networks

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト …